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The use of wavelets for solving PDE’s has

Computational Physics R&D Department

promised many advantages ...

• Convergence rates superior to finite difference,
finite element methods

• Built-in and “automatic” h-adaptivity

• “Scale-matched” hierarchical PDE solutions

• Combined advantages of spectral and finite difference
methods

“The theoretical and numerical results suggest that for the
above class of problems [ODE’s and PDE’s] wavelets
provide a robust and accurate alternative to more traditional
methods such as finite differences and finite elements”,
Glowinski, et al., 1990

“The convergence rates of wavelet solutions are examined
and they are found to compare extremely favorably to the
finite difference solutions”, Amartunga, et al., 1994
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This Work is Attempting to Quantify the Numerical

Computational Physics R&D Department

Performance of RKPM and Wavelet Bases

• Numerical performance includes: truncation error, consistency,
stability, rate of convergence, dispersive character, and spatial
adaptivity
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Numerical analysis has quantified the

Computational Physics R&D Department

performance of the DGHM wavelet element

• DGHM delivers  accuracy despite its quadratic appearance

• Fractal multi-scaling functions can only represent

• The computational cost is that of a quadratic element (+)

• DGHM exhibits inferior dispersive behavior for the
second-order wave equation
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DGHM has provided insight into wavelet-based
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multi-level solution algorithms

• ,  with

•

•

• Coarse-grid solve:

• Due to orthogonality:  may be assembled

• Refinement:

• Correction:
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Multi-level solution strategy exhibits uniformly

Computational Physics R&D Department

bounded condition number for multi-scale DOF

• Stationary iterative techniques may be used to
solve for the multi-scale DOF (wavelet coefficients)

• Spectral radius for Jacobi iteration:

• Spectral radius for Gauss-Seidel iteration:

DGHM Multi-Wavelet Quadratic Multi-Wavelet

Element
Level k

0 2.3533 5.5676

1 2.5497 5.7578

2 2.6057 5.7945

3 2.6201 5.8063

4 2.6238 5.8093

cond Kk
ψψ Kk

ψφTk
φψ–[ ]( ) cond Kk

ψψ Kk
ψφTk

φψ–[ ]( )

ρ 0.135≈
ρ 0.018≈



File=/home/machris/talks/ices-1998b/o-heads.frm
-7 of 12-

Multi-scale “wavelet” finite element relies upon

Computational Physics R&D Department

an H1 stable basis for elliptic problems

• ,  with

• Condition number is mesh independent:

u''– f= 0 x 1≤ ≤ u 0( ) α u 1( ), β= =

κ O 1( )=

n1 n2
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Two-Dimensional Multi-scale element extends

Computational Physics R&D Department

the Schauder basis

• ,  = number of levels

• Multi-scale element is compatible with h-adaptive
codes such as ALEGRA and MPSALSA

Element 4-Patch
Element Scale
Components
for FEM
assembly

κ O J2( ) for 2-D, O 2J( ) for 3-D= J
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The Schauder Basis Yields Finger-Diagonal

Computational Physics R&D Department

Mass and Stiffness Operators

• Reduced condition number is offset by the finger-diagonal matrix

structure for an  mesh — Schauder wins for

• Schauder Mass:

• Schauder Stiffness:

• FEM Storage:

N N× N N× 105>

NNZ 2k 1–( ) N 1+( ) 3+( )2=

NNZ N 4k 3–( ) N 1+( ) 7+( )=

NNZ 3N 2–( )2=

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

0 100 200 300 400 500 600 700 800 900

0

100

200

300

400

500

600

700

800

900

FEM Schauder - Mass and Stiffness



File=/home/machris/talks/ices-1998b/o-heads.frm
-10 of 12-

Row-Column Sum Lumping Reduces Storage

Computational Physics R&D Department

and Simplifies Multi-Level Solution Scheme

• ,ε∇2u– u+ f in Ω= u 0 on Γ=
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Computational Physics R&D Department

Summary and Conclusions

• DGHM (and related) multi-wavelets are not a good choice
for a Hierarchical basis for solving PDE’s

• The Schauder basis is a good prototype of the IDEAL
Hierarchical basis but may require the use of ad-hoc
row-column lumping for multi-dimensions

• The multi-scale elements (Schauder basis) have great
potential for developing fast elliptic solver

• The construction of hierarchical bases that yield
uniformly bounded condition number, i.e., are stable,
for arbitrary PDE’s remains an open issue

At this time, the use of wavelet bases for PDE’s
remains a research topic centered squarely in

the Mathematics community
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Multiresolution analysis breaks  into

Computational Physics R&D Department

a sequence of nested subspaces

• The multi-scale representation of a function relies on
a series of nested subspaces

•

• The closed union is dens in ,

• The intersection is the trivial set,

• The spaces in a multiresolution analysis are related by

a scaling law,

• Each subspace is spanned by integer translates of the
scaling function

L2 R( )
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